Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.594
Filtrar
1.
Protein Sci ; 33(5): e4989, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38659213

RESUMO

Intrinsically disordered late embryogenesis abundant (LEA) proteins play a central role in the tolerance of plants and other organisms to dehydration brought upon, for example, by freezing temperatures, high salt concentration, drought or desiccation, and many LEA proteins have been found to stabilize dehydration-sensitive cellular structures. Their conformational ensembles are highly sensitive to the environment, allowing them to undergo conformational changes and adopt ordered secondary and quaternary structures and to participate in formation of membraneless organelles. In an interdisciplinary approach, we discovered how the functional diversity of the Arabidopsis thaliana LEA protein COR15A found in vitro is encoded in its structural repertoire, with the stabilization of membranes being achieved at the level of secondary structure and the stabilization of enzymes accomplished by the formation of oligomeric complexes. We provide molecular details on intra- and inter-monomeric helix-helix interactions, demonstrate how oligomerization is driven by an α-helical molecular recognition feature (α-MoRF) and provide a rationale that the formation of noncanonical, loosely packed, right-handed coiled-coils might be a recurring theme for homo- and hetero-oligomerization of LEA proteins.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Intrinsicamente Desordenadas , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Congelamento , Modelos Moleculares , Multimerização Proteica , Estrutura Secundária de Proteína
2.
Nature ; 627(8005): 847-853, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480885

RESUMO

Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors with an N-terminal Toll/interleukin-1 receptor (TIR) domain mediate recognition of strain-specific pathogen effectors, typically via their C-terminal ligand-sensing domains1. Effector binding enables TIR-encoded enzymatic activities that are required for TIR-NLR (TNL)-mediated immunity2,3. Many truncated TNL proteins lack effector-sensing domains but retain similar enzymatic and immune activities4,5. The mechanism underlying the activation of these TIR domain proteins remain unclear. Here we show that binding of the TIR substrates NAD+ and ATP induces phase separation of TIR domain proteins in vitro. A similar condensation occurs with a TIR domain protein expressed via its native promoter in response to pathogen inoculation in planta. The formation of TIR condensates is mediated by conserved self-association interfaces and a predicted intrinsically disordered loop region of TIRs. Mutations that disrupt TIR condensates impair the cell death activity of TIR domain proteins. Our data reveal phase separation as a mechanism for the activation of TIR domain proteins and provide insight into substrate-induced autonomous activation of TIR signalling to confer plant immunity.


Assuntos
Trifosfato de Adenosina , Arabidopsis , NAD , Tabaco , 60422 , Proteínas de Plantas , Domínios Proteicos , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Morte Celular , Mutação , NAD/metabolismo , Tabaco/genética , Tabaco/imunologia , Tabaco/metabolismo , Proteínas NLR/química , Proteínas NLR/genética , Proteínas NLR/imunologia , Proteínas NLR/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Domínios Proteicos/genética , Receptores Imunológicos/química , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Transdução de Sinais , Receptores Toll-Like/química , Receptores de Interleucina-1/química
3.
Nat Plants ; 10(3): 494-511, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38467800

RESUMO

Pressurized cells with strong walls make up the hydrostatic skeleton of plants. Assembly and expansion of such stressed walls depend on a family of secreted RAPID ALKALINIZATION FACTOR (RALF) peptides, which bind both a membrane receptor complex and wall-localized LEUCINE-RICH REPEAT EXTENSIN (LRXs) in a mutually exclusive way. Here we show that, in root hairs, the RALF22 peptide has a dual structural and signalling role in cell expansion. Together with LRX1, it directs the compaction of charged pectin polymers at the root hair tip into periodic circumferential rings. Free RALF22 induces the formation of a complex with LORELEI-LIKE-GPI-ANCHORED PROTEIN 1 and FERONIA, triggering adaptive cellular responses. These findings show how a peptide simultaneously functions as a structural component organizing cell wall architecture and as a feedback signalling molecule that regulates this process depending on its interaction partners. This mechanism may also underlie wall assembly and expansion in other plant cell types.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Peptídeos/metabolismo , Plantas/metabolismo , Parede Celular/metabolismo , Raízes de Plantas/metabolismo
4.
Science ; 383(6689): eadj4591, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513023

RESUMO

Brassinosteroids are steroidal phytohormones that regulate plant development and physiology, including adaptation to environmental stresses. Brassinosteroids are synthesized in the cell interior but bind receptors at the cell surface, necessitating a yet to be identified export mechanism. Here, we show that a member of the ATP-binding cassette (ABC) transporter superfamily, ABCB19, functions as a brassinosteroid exporter. We present its structure in both the substrate-unbound and the brassinosteroid-bound states. Bioactive brassinosteroids are potent activators of ABCB19 ATP hydrolysis activity, and transport assays showed that ABCB19 transports brassinosteroids. In Arabidopsis thaliana, ABCB19 and its close homolog, ABCB1, positively regulate brassinosteroid responses. Our results uncover an elusive export mechanism for bioactive brassinosteroids that is tightly coordinated with brassinosteroid signaling.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Arabidopsis , Arabidopsis , Brassinosteroides , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Brassinosteroides/metabolismo , Ácidos Indolacéticos/metabolismo , Conformação Proteica
5.
Science ; 383(6684): eadk3468, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359131

RESUMO

Plant intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) analyzed to date oligomerize and form resistosomes upon activation to initiate immune responses. Some NLRs are encoded in tightly linked co-regulated head-to-head genes whose products function together as pairs. We uncover the oligomerization requirements for different Arabidopsis paired CHS3-CSA1 alleles. These pairs form resting-state heterodimers that oligomerize into complexes distinct from NLRs analyzed previously. Oligomerization requires both conserved and allele-specific features of the respective CHS3 and CSA1 Toll-like interleukin-1 receptor (TIR) domains. The receptor kinases BAK1 and BIRs inhibit CHS3-CSA1 pair oligomerization to maintain the CHS3-CSA1 heterodimer in an inactive state. Our study reveals that paired NLRs hetero-oligomerize and likely form a distinctive "dimer of heterodimers" and that structural heterogeneity is expected even among alleles of closely related paired NLRs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Quitina Sintase , Proteínas NLR , Doenças das Plantas , Imunidade Vegetal , Receptores Imunológicos , Alelos , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quitina Sintase/química , Quitina Sintase/genética , Quitina Sintase/metabolismo , Mutação , Proteínas NLR/química , Proteínas NLR/genética , Proteínas NLR/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Receptores Imunológicos/química , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Multimerização Proteica
6.
J Exp Bot ; 75(5): 1530-1546, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37976211

RESUMO

Arabidopsis PHYTOALEXIN DEFICIENT 4 (PAD4) has an essential role in pathogen resistance as a heterodimer with ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1). Here we investigated an additional PAD4 role in which it associates with and promotes the maturation of the immune-related cysteine protease RESPONSIVE TO DEHYDRATION 19 (RD19). We found that RD19 and its paralog RD19c promoted EDS1- and PAD4-mediated effector-triggered immunity to an avirulent Pseudomonas syringae strain, DC3000, expressing the effector AvrRps4 and basal immunity against the fungal pathogen Golovinomyces cichoracearum. Overexpression of RD19, but not RD19 protease-inactive catalytic mutants, in Arabidopsis transgenic lines caused EDS1- and PAD4-dependent autoimmunity and enhanced pathogen resistance. In these lines, RD19 maturation to a pro-form required its catalytic residues, suggesting that RD19 undergoes auto-processing. In transient assays, PAD4 interacted preferentially with the RD19 pro-protease and promoted its nuclear accumulation in leaf cells. Our results lead us to propose a model for PAD4-stimulated defense potentiation. PAD4 promotes maturation and nuclear accumulation of processed RD19, and RD19 then stimulates EDS1-PAD4 dimer activity to confer pathogen resistance. This study highlights potentially important additional PAD4 functions that eventually converge on canonical EDS1-PAD4 dimer signaling in plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cisteína Proteases , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Hidrolases de Éster Carboxílico/química , Cisteína Proteases/genética , Fitoalexinas , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética
7.
Structure ; 32(2): 157-167.e5, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103547

RESUMO

Members of the OSCA/TMEM63 family are mechanically activated ion channels and structures of some OSCA members have revealed the architecture of these channels and structural features that are potentially involved in mechanosensation. However, these structures are all in a similar state and information about the motion of different elements of the structure is limited, preventing a deeper understanding of how these channels work. Here, we used cryoelectron microscopy to determine high-resolution structures of Arabidopsis thaliana OSCA1.2 and OSCA2.3 in peptidiscs. The structure of OSCA1.2 matches previous structures of the same protein in different environments. Yet, in OSCA2.3, the TM6a-TM7 linker adopts a different conformation that constricts the pore on its cytoplasmic side. Furthermore, coevolutionary sequence analysis uncovered a conserved interaction between the TM6a-TM7 linker and the beam-like domain (BLD). Our results reveal conformational heterogeneity and differences in conserved interactions between the TMD and BLD among members of the OSCA family.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Microscopia Crioeletrônica , Canais Iônicos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Domínios Proteicos , Proteínas de Arabidopsis/química , Canais de Cálcio/metabolismo
8.
Nat Commun ; 14(1): 7345, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963863

RESUMO

The anion channel SLAC1 functions as a crucial effector in the ABA signaling, leading to stomata closure. SLAC1 is activated by phosphorylation in its intracellular domains. Both a binding-activation model and an inhibition-release model for activation have been proposed based on only the closed structures of SLAC1, rendering the structure-based activation mechanism controversial. Here we report cryo-EM structures of Arabidopsis SLAC1 WT and its phosphomimetic mutants in open and closed states. Comparison of the open structure with the closed ones reveals the structural basis for opening of the conductance pore. Multiple phosphorylation of an intracellular domain (ICD) causes dissociation of ICD from the transmembrane domain. A conserved, positively-charged sequence motif in the intracellular loop 2 (ICL2) seems to be capable of sensing of the negatively charged phosphorylated ICD. Interactions between ICL2 and ICD drive drastic conformational changes, thereby widening the pore. From our results we propose that SLAC1 operates by a mechanism combining the binding-activation and inhibition-release models.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Microscopia Crioeletrônica , Ácido Abscísico , Estômatos de Plantas/fisiologia , Proteínas de Membrana , Ânions
9.
Science ; 382(6671): 719-725, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943924

RESUMO

Assembly of cell wall polysaccharides into specific patterns is required for plant growth. A complex of RAPID ALKALINIZATION FACTOR 4 (RALF4) and its cell wall-anchored LEUCINE-RICH REPEAT EXTENSIN 8 (LRX8)-interacting protein is crucial for cell wall integrity during pollen tube growth, but its molecular connection with the cell wall is unknown. Here, we show that LRX8-RALF4 complexes adopt a heterotetrametric configuration in vivo, displaying a dendritic distribution. The LRX8-RALF4 complex specifically interacts with demethylesterified pectins in a charge-dependent manner through RALF4's polycationic surface. The LRX8-RALF4-pectin interaction exerts a condensing effect, patterning the cell wall's polymers into a reticulated network essential for wall integrity and expansion. Our work uncovers a dual structural and signaling role for RALF4 in pollen tube growth and in the assembly of complex extracellular polymers.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Parede Celular , Pectinas , Tubo Polínico , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Pectinas/química , Pectinas/metabolismo , Peptídeos/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo
10.
Cell ; 186(25): 5457-5471.e17, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37979582

RESUMO

Extracellular perception of auxin, an essential phytohormone in plants, has been debated for decades. Auxin-binding protein 1 (ABP1) physically interacts with quintessential transmembrane kinases (TMKs) and was proposed to act as an extracellular auxin receptor, but its role was disputed because abp1 knockout mutants lack obvious morphological phenotypes. Here, we identified two new auxin-binding proteins, ABL1 and ABL2, that are localized to the apoplast and directly interact with the extracellular domain of TMKs in an auxin-dependent manner. Furthermore, functionally redundant ABL1 and ABL2 genetically interact with TMKs and exhibit functions that overlap with those of ABP1 as well as being independent of ABP1. Importantly, the extracellular domain of TMK1 itself binds auxin and synergizes with either ABP1 or ABL1 in auxin binding. Thus, our findings discovered auxin receptors ABL1 and ABL2 having functions overlapping with but distinct from ABP1 and acting together with TMKs as co-receptors for extracellular auxin.


Assuntos
Arabidopsis , Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
11.
Biol Chem ; 404(11-12): 1069-1084, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37674329

RESUMO

mRNA translation is tightly regulated by various classes of RNA-binding proteins (RBPs) during development and in response to changing environmental conditions. In this study, we characterize the arginine-glycine-glycine (RGG) motif containing RBP family of Arabidopsis thaliana representing homologues of the multifunctional translation regulators and ribosomal preservation factors Stm1 from yeast (ScStm1) and human SERBP1 (HsSERBP1). The Arabidopsis genome encodes three RGG proteins named AtRGGA, AtRGGB and AtRGGC. While AtRGGA is ubiquitously expressed, AtRGGB and AtRGGC are enriched in dividing cells. All AtRGGs localize almost exclusively to the cytoplasm and bind with high affinity to ssRNA, while being capable to interact with most nucleic acids, except dsRNA. A protein-interactome study shows that AtRGGs interact with ribosomal proteins and proteins involved in RNA processing and transport. In contrast to ScStm1, AtRGGs are enriched in ribosome-free fractions in polysome profiles, suggesting additional plant-specific functions. Mutant studies show that AtRGG proteins differentially regulate flowering time, with a distinct and complex temperature dependency for each AtRGG protein. In conclusion, we suggest that AtRGGs function in fine-tuning translation efficiency to control flowering time and potentially other developmental processes in response to environmental changes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Temperatura , Proteínas de Ligação a RNA/química , Citosol/metabolismo , Glicina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo
12.
Protein Sci ; 32(9): e4753, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37572332

RESUMO

Within the cell, the trace element molybdenum (Mo) is only biologically active when complexed either within the nitrogenase-specific FeMo cofactor or within the molybdenum cofactor (Moco). Moco consists of an organic part, called molybdopterin (MPT) and an inorganic part, that is, the Mo-center. The enzyme which catalyzes the Mo-center formation is the molybdenum insertase (Mo-insertase). Mo-insertases consist of two functional domains called G- and E-domain. The G-domain catalyzes the formation of adenylated MPT (MPT-AMP), which is the substrate for the E-domain, that catalyzes the actual molybdate insertion reaction. Though the functions of E- and G-domain have been elucidated to great structural and mechanistic detail, their combined function is poorly characterized. In this work, we describe a structural model of the eukaryotic Mo-insertase Cnx1 complex that was generated based on cross-linking mass spectrometry combined with computational modeling. We revealed Cnx1 to form an asymmetric hexameric complex which allows the E- and G-domain active sites to align in a catalytic productive orientation toward each other.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Metaloproteínas , Proteínas de Arabidopsis/química , Calnexina/química , Calnexina/metabolismo , Arabidopsis/química , Molibdênio/metabolismo , Coenzimas/química , Metaloproteínas/química , Pteridinas/química
13.
Biomol NMR Assign ; 17(1): 143-149, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37145295

RESUMO

AtGRP2 (Arabidopsis thaliana glycine-rich protein 2) is a 19-kDa RNA-binding glycine-rich protein that regulates key processes in A. thaliana. AtGRP2 is a nucleo-cytoplasmic protein with preferential expression in developing tissues, such as meristems, carpels, anthers, and embryos. AtGRP2 knockdown leads to an early flowering phenotype. In addition, AtGRP2-silenced plants exhibit a reduced number of stamens and abnormal development of embryos and seeds, suggesting its involvement in plant development. AtGRP2 expression is highly induced by cold and abiotic stresses, such as high salinity. Moreover, AtGRP2 promotes double-stranded DNA/RNA denaturation, indicating its role as an RNA chaperone during cold acclimation. AtGRP2 is composed of an N-terminal cold shock domain (CSD) followed by a C-terminal flexible region containing two CCHC-type zinc fingers interspersed with glycine-rich sequences. Despite its functional relevance in flowering time regulation and cold adaptation, the molecular mechanisms employed by AtGRP2 are largely unknown. To date, there is no structural information regarding AtGRP2 in the literature. Here, we report the 1H, 15N, and 13C backbone and side chain resonance assignments, as well as the chemical shift-derived secondary structure propensities, of the N-terminal cold shock domain of AtGRP2, encompassing residues 1-90. These data provide a framework for AtGRP2-CSD three-dimensional structure, dynamics, and RNA binding specificity investigation, which will shed light on its mechanism of action.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Ligação a RNA , Proteínas de Arabidopsis/química , Resposta ao Choque Frio , Glicina/metabolismo , Ressonância Magnética Nuclear Biomolecular , RNA/metabolismo , Proteínas de Ligação a RNA/química
14.
Biomol NMR Assign ; 17(2): 173-178, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37256435

RESUMO

In higher eukaryotes, the dsRNA binding proteins (dsRBPs) assist the corresponding Dicer in the cleavage of dsRNA precursors to effect post-transcriptional gene regulation through RNA interference. In contrast, the DRB7.2:DRB4 complex in Arabidopsis thaliana acts as a potent inhibitor of Dicer-like 3 (DCL3) processing by sequestering endogenous inverted-repeat dsRNA precursors. DRB7.2 possesses a single dsRNA Binding Domain (dsRBD) flanked by unstructured N- and C-terminal regions. Whereas, DRB4 has two concatenated N-terminal dsRBDs and a long unstructured C-terminus harboring a small domain of unidentified function, D3. Here, we present near-complete backbone and partial side chain assignments of the interaction domains, DRB7.2M (i.e., DRB7.2 (71-162)) and DRB4D3 (i.e., DRB4 (294-355)) as a complex. Our findings establish the groundwork for future structural, dynamic, and functional research on DRB7.2 and DRB4, and provide clues for the endo-IR pathway in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ressonância Magnética Nuclear Biomolecular , RNA de Cadeia Dupla/metabolismo , Interferência de RNA , Proteínas de Arabidopsis/química , Ribonuclease III/química , Ribonuclease III/genética , Ribonuclease III/metabolismo , Proteínas de Ligação a RNA/química
15.
Eur J Cell Biol ; 102(2): 151322, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37211005

RESUMO

Many signaling processes rely on information decoding at the plasma membrane, and membrane-associated proteins and their complexes are fundamental for regulating this process. Still many questions exist as to how protein complexes are assembled and function at membrane sites to change identity and dynamics of membrane systems. Peripheral membrane proteins containing a calcium and phospholipid-binding C2-domain can act in membrane-related signaling by providing a tethering function so that protein complexes form. C2 domain proteins termed C2-DOMAIN ABSCISIC ACID-RELATED (CAR) proteins are plant-specific, and the functional relevance of this C2 domain protein subgroup is just emerging. The ten Arabidopsis CAR proteins CAR1 to CAR10 have a single C2 domain with a plant-specific insertion, the so-called "CAR-extra-signature" or also termed "sig domain". Via this "sig domain" CAR proteins can bind signaling protein complexes of different kinds and act in biotic and abiotic stress, blue light and iron nutrition. Interestingly, CAR proteins can oligomerize in membrane microdomains, and their presence in the nucleus can be linked with nuclear protein regulation. This shows that CAR proteins may play unprecedented roles in coordinating environmental responses and assembling required protein complexes to transmit information cues between plasma membrane and nucleus. The aim of this review is to summarize structure-function characteristics of the CAR protein family and assemble findings from CAR protein interactions and physiological functions. From this comparative investigation we extract common principles about the molecular operations that CAR proteins may fulfill in the cell. We also deduce functional properties of the CAR protein family based on its evolution and gene expression profiles. We highlight open questions and suggest novel avenues to prove and understand the functional networks and roles played by this protein family in plants.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Ácido Abscísico/metabolismo , Cálcio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Transdução de Sinais , Membrana Celular/metabolismo
16.
J Biol Chem ; 299(6): 104732, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086785

RESUMO

Nicotianamine synthase (NAS) catalyzes the biosynthesis of the low-molecular-mass metal chelator nicotianamine (NA) from the 2-aminobutyrate moieties of three SAM molecules. NA has central roles in metal nutrition and metal homeostasis of flowering plants. The enzymatic function of NAS remains poorly understood. Crystal structures are available for archaeal and bacterial NAS-like proteins that carry out simpler aminobutanoyl transferase reactions. Here, we report amino acids essential for the activity of AtNAS1 based on structural modeling and site-directed mutagenesis. Using a newly developed enzyme-coupled continuous activity assay, we compare differing NAS proteins identified through multiple sequence alignments and phylogenetic analyses. In most NAS of dicotyledonous and monocotyledonous plants (class Ia and Ib), the core-NAS domain is fused to a variable C-terminal domain. Compared to fungal and moss NAS that comprise merely a core-NAS domain (class III), NA biosynthetic activities of the four paralogous Arabidopsis thaliana NAS proteins were far lower. C-terminally trimmed core-AtNAS variants exhibited strongly elevated activities. Of 320 amino acids of AtNAS1, twelve, 287-TRGCMFMPCNCS-298, accounted for the autoinhibitory effect of the C terminus, of which approximately one-third was attributed to N296 within a CNCS motif that is fully conserved in Arabidopsis. No detectable NA biosynthesis was mediated by two representative plant NAS proteins that naturally lack the C-terminal domain, class Ia Arabidopsis halleri NAS5 and Medicago truncatula NAS2 of class II which is found in dicots and diverged early during the evolution of flowering plants. Next, we will address a possible posttranslational release of autoinhibition in class I NAS proteins.


Assuntos
Alquil e Aril Transferases , Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Filogenia , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética
17.
Protein Sci ; 32(4): e4624, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36917448

RESUMO

Enhanced Disease Susceptibility 1 (EDS1), a key component of microbe-triggered immunity and effector-triggered immunity in most higher plants, forms functional heterodimeric complexes with its homologs Phytoalexin Deficient 4 (PAD4) or Senescence-associated Gene 101 (SAG101). Here, the crystal structure of VvEDS1Nterm , the N-terminal domain of EDS1 from Vitis vinifera, is reported, representing the first structure of an EDS1 entity beyond the model plant Arabidopsis thaliana. VvEDS1Nterm has an α/ß-hydrolase fold, is similar to the N-terminal domain of A. thaliana EDS1 and forms stable homodimers in solution as well as in crystals. These VvEDS1Nterm homodimers are spatially incompatible with heterodimers with PAD4 or SAG101, they explain why VvEDS1Nterm does not interact with V. vinifera PAD4 according to gel filtration, and they serve as a guide to develop a plausible, albeit experimentally not verified model of full-length EDS1. VvEDS1Nterm is a splicing variant comprising two of three exons of the VvEDS1 gene. It originates from a naturally occurring mRNA, in which the first of two introns was removed while the second one containing a stop codon close to the exon/intron border was retained. This is a potential case of intron retention and the first report of this phenomenon in the context of EDS1. Its biological significance has not yet been clarified, nor has the question if a VvEDS1Nterm protein with a specific function can occur under physiological conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Vitis , Proteínas de Arabidopsis/química , Vitis/genética , Vitis/metabolismo , Fitoalexinas , Proteínas de Ligação a DNA/química , Arabidopsis/genética , Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/química , Doenças das Plantas
18.
Biochem J ; 480(6): 433-453, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36896917

RESUMO

Myo-inositol tris/tetrakisphosphate kinases (ITPKs) catalyze diverse phosphotransfer reactions with myo-inositol phosphate and myo-inositol pyrophosphate substrates. However, the lack of structures of nucleotide-coordinated plant ITPKs thwarts a rational understanding of phosphotransfer reactions of the family. Arabidopsis possesses a family of four ITPKs of which two isoforms, ITPK1 and ITPK4, control inositol hexakisphosphate and inositol pyrophosphate levels directly or by provision of precursors. Here, we describe the specificity of Arabidopsis ITPK4 to pairs of enantiomers of diverse inositol polyphosphates and show how substrate specificity differs from Arabidopsis ITPK1. Moreover, we provide a description of the crystal structure of ATP-coordinated AtITPK4 at 2.11 Šresolution that, along with a description of the enantiospecificity of the enzyme, affords a molecular explanation for the diverse phosphotransferase activity of this enzyme. That Arabidopsis ITPK4 has a KM for ATP in the tens of micromolar range, potentially explains how, despite the large-scale abolition of InsP6, InsP7 and InsP8 synthesis in Atitpk4 mutants, Atitpk4 lacks the phosphate starvation responses of Atitpk1 mutants. We further demonstrate that Arabidopsis ITPK4 and its homologues in other plants possess an N-terminal haloacid dehalogenase-like fold not previously described. The structural and enzymological information revealed will guide elucidation of ITPK4 function in diverse physiological contexts, including InsP8-dependent aspects of plant biology.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Difosfatos , Fosfatos de Inositol , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Ácido Fítico , Trifosfato de Adenosina
19.
J Biol Chem ; 299(3): 102898, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36639029

RESUMO

Jasmonates are oxylipin phytohormones critical for plant resistance against necrotrophic pathogens and chewing herbivores. An early step in their biosynthesis is catalyzed by non-heme iron lipoxygenases (LOX; EC 1.13.11.12). In Arabidopsis thaliana, phosphorylation of Ser600 of AtLOX2 was previously reported, but whether phosphorylation regulates AtLOX2 activity is unclear. Here, we characterize the kinetic properties of recombinant WT AtLOX2 (AtLOX2WT). AtLOX2WT displays positive cooperativity with α-linolenic acid (α-LeA, jasmonate precursor), linoleic acid (LA), and arachidonic acid (AA) as substrates. Enzyme velocity with endogenous substrates α-LeA and LA increased with pH. For α-LeA, this increase was accompanied by a decrease in substrate affinity at alkaline pH; thus, the catalytic efficiency for α-LeA was not affected over the pH range tested. Analysis of Ser600 phosphovariants demonstrated that pseudophosphorylation inhibits enzyme activity. AtLOX2 activity was not detected in phosphomimics Atlox2S600D and Atlox2S600M when α-LeA or AA were used as substrates. In contrast, phosphonull mutant Atlox2S600A exhibited strong activity with all three substrates, α-LeA, LA, and AA. Structural comparison between the AtLOX2 AlphaFold model and a complex between 8R-LOX and a 20C polyunsaturated fatty acid suggests a close proximity between AtLOX2 Ser600 and the carboxylic acid head group of the polyunsaturated fatty acid. This analysis indicates that Ser600 is located at a critical position within the AtLOX2 structure and highlights how Ser600 phosphorylation could affect AtLOX2 catalytic activity. Overall, we propose that AtLOX2 Ser600 phosphorylation represents a key mechanism for the regulation of AtLOX2 activity and, thus, the jasmonate biosynthesis pathway and plant resistance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Lipoxigenase , Oxilipinas , Arabidopsis/metabolismo , Ácido Araquidônico , Ácidos Graxos Insaturados , Ácido Linoleico , Lipoxigenase/química , Lipoxigenase/genética , Lipoxigenase/metabolismo , Mutação , Oxilipinas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
20.
Nucleic Acids Res ; 51(1): 434-448, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36546761

RESUMO

Plant-specific TCP transcription factors are key regulators of diverse plant functions. TCP transcription factors have long been annotated as basic helix-loop-helix (bHLH) transcription factors according to remote sequence homology without experimental validation, and their consensus DNA-binding sequences and protein-DNA recognition mechanisms have remained elusive. Here, we report the crystal structures of the class I TCP domain from AtTCP15 and the class II TCP domain from AtTCP10 in complex with different double-stranded DNA (dsDNA). The complex structures reveal that the TCP domain is a distinct DNA-binding motif and the homodimeric TCP domains adopt a unique three-site recognition mode, binding to dsDNA mainly through a central pair of ß-strands formed by the dimer interface and two basic flexible loops from each monomer. The consensus DNA-binding sequence for class I TCPs is a perfectly palindromic 11 bp (GTGGGNCCCAC), whereas that for class II TCPs is a near-palindromic 11 bp (GTGGTCCCCAC). The unique DNA binding mode allows the TCP domains to display broad specificity for a range of DNA sequences even shorter than 11 bp, adding further complexity to the regulatory network of plant TCP transcription factors.


Assuntos
Proteínas de Arabidopsis , DNA , Fatores de Transcrição , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , DNA/química , DNA/metabolismo , Sequências Hélice-Alça-Hélice , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...